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CONTRIBVTIOFJ TO THE THEDRY OF HEAT TRANSFER AT STRONG 
TEMPERATL? AMI) PRE3SW GRADIENT'S IM THE DIRECTION OF 

THE FLOW, FOR PLANE WTAT1WAL;LY SPMPaGTRICAL 
BOUNDARY LAYERS 

A.Walz* 

Analysis showing the  Nusselt classical theory and classical 

methods cannot be applied t o  t he  solution of heat-transfer 

problems i n  high-speed aerodynamics, because they neglect 

t he  e f f ec t  of t e m p e r a t u r e  gradients i n  the  d i rec t ion  of flow. 

For laminar boundary layers, this ef fec t  can be substant ia l .  

An approldrnate theory is developed which t a k e s  into account 

t he  effect of such temprature .gradients  f o r  any temperature 

d is t r ibu t ion  at  t h e  wall and which is applicable t o  both in- 

compressible and compressible turbulent boundarg layers. For 

similar boundary-layer solutions, the theory demonstrates 

(in analytical form) that t h e  e f f ec t  of heat t r ans fe r  of a 

pressure gradient in  t h e  direct ion of flow can a l so  be ap- 

preciable. A d i s t i nc t ive  feature of the  proposed theory is 

that the tempemture and velocity prof i les  of the boundary 

layer  need not be expressed in series form. The only un- 

knowns besides the  boundary-layer thickness are a form para- 

meter H(x) f o r  t he  velocity prof i le  and a "modification para- 

meter" K(x) f o r  the  temperature prof i le ,  These th ree  unknowns 

can be determined from a simultaneous system of th ree  first- 

I + Polytechnic Institute Karlsruhe. 

* Numbers i n  the  margin indicate  pagination in  the original foreign texb. 
. I  
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order d i f f e ren t i a l  equations. 

several  examples 

The theory is applied to 

1. preliminary Remarks 

The problem of heat transfer between sol id  walls and flowing media touche2 
I 

upon tm, large disciplines,  namely, themdynamics and f l u i d  mechanics. For 

both disciplines,  t h i s  type of heat transfer had f o r  long been a t h e o r e t i c a l l y  

extremely d i f f i c u l t  "marginal" problem, whose solution had of necessity been 

lef t  to  purely empirical means. 

Chly after developent  of t h e  boundary-layer theory by L.Prandt1 (Bibl.1) I 

and t h e  similitude theory of heat t ransfer  by W . N u s s e l t  (Bibl.2), a t  t h e  begin-/ 

ning of t h i s  Century, did strid solutions or (in the  case of turbulent boundal$ 

layers) sa t i s fac tory  estimates of t h i s  problem become possible, in some impor- 1 

tant  special  cases. The well-known theoret ical  and semi-empirical laws which, I 

i n  the  case of forced convection, express t h e  Nusselt wheat t ransfer  coeffi- 

cientw Nu as a function of t he  Prandtlnumber Pr (= r a t i o  of impulse transfer 

t o  heat exchange) and of the  Reynolds number R e  (= r a t i o  of i ne r t i a  force t o  

viscosi ty  force),  were important results of t h i s  work. 

I i -' 
f 

- 1  
I - 

Recently, the problematics of hea t  t ransfer  was fur ther  complicated: In 

' rapidly flowing media, energy conversions (generation of heats of compression 
I 
land f r i c t ion )  take place which - over t h e  var ia t ion of physical constants with 

, I  
'temperature'and pressure - result i n  a strong interact ion of the flow and tem- 

lperature boundary layers. 

.' 

" 

T O  

+ -  I 

The laws of conservation of momentum and energy 

which w e r e  independently solvable when t r ea t ing  the  heat t ransfer  pmblem on 
i 

- \ < I  
! the  basis of Nusselt's similitude theory with constant physical constants, 1 

,' :can be solved in most mdern problems oply as coupled systems of partial dif- 
~ -~~~ 
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f e r e n t i a l  equations. In  addition, the boundary conditions are frequently much 

more complex because of certain effects, such as strong wall-temperature and 

pressure gradients i n  the  direct ion of f l o w .  

Due t o  the development of e f f ic ien t  mathematical and computational (speci- 

f ical ly  electronic) means, new poss ib i l i t i es  were created f o r  an exact o r  ap- 

proximate solution of t h i s  d i f f icu l t  problem complex of heat transfer. 
I 

Modern mathematical a ids  include methods f o r  an approximate solution of 

p a r t i a l  differential equations by averaging t h e  equation result in one coordi- 

nate direct ion (by forming so-called i n t eg r s l  conditions as ord inary d i f f e ren t i  

a1 equations f o r  free parameters of a solution argument); these are methods 

related t o  Galerkints method (Bibl.3), fami l ia r  t o  mathematicians. 

In t h i s  pqer, after a brief r e v i e w  of the c lass ica l  theory of flow and 

- t e m p e r a t u r e  boundary layers, we will demonstrate t h a t  t he  use of sui table  solu- 
-~ 

t i o n  arguments and t he  method of in tegra l  conditions eliminates the  need f o r  

excessive simplifications, which were required f o r  mst of the  conventional 

solutions. This will furnish an answer t o  some questions on heat t r sns fe r  i n  

technically important problems, which (so far as known t o  t he  author) have neve 

been solved. 

2. Problem Formlation 

I /  
I 

I 

i 

-the assumption t h a t  the temperature Tw of t h e  wall, along which the  heat trans- 

One of the basic simplifications of most known theories ( for  example) is 
- .  

I 

dT" 
' :fer takes place, remains constant in the direct ion of flow x (F = 0) and 

' . I  t h a t  no pressure gradient exists in t h e  direct ion of f l o w  (* = 0); see, f o r  

'ewmple, L.Crocco (Bibl.4) and E.R.van Driest (Bibl.5). 

i D.R.Chapmn and M.W.Rubesin (Bibl.6) in 1949 as w e l l  as H.Schlichting 
'_ I - 
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(Bib1.7) i n  1951 were able  to demnstrate,  in  the case of laminar incompressible 

and compressible boundary layers,  t ha t  at  least the influence of t h e  variable 

wall temperature on the  heat transfer m y  be considerable. 

In a frequently quoted report on similar solutions of t he  compressible 

laminar boundary layer with h e a t  transfer, T.V.Li and H.T.Naganratsu (Bibl.8) 

showed t h a t  a pressure gradient, in t h e  d i rec t ion  of flow, w i l l  have an - al- \ 

. _  

( 1  

.. 

though moderate - influence on t h e  solution. 

In the  theory t o  be developed here, t he  influence of t h e  gradients - dT" 
dx 

dP and 

layers . 
is t o  be determinable f o r  compressible laminar and turbulent boundary 

This t h e o q  a l so  covers t h e  special case of heat transfer f o r  very th in  

threads exposed t o  longitudinal flow, i n  a ra ther  simple manner; t h i s  case is  

pf considerable importance i n  the technique of the  filament production from 

t h e m p l a s t i c  mterials i n  blast jets. 
- 

The theory itself, however, w i l l  be restricted in the  conventional m e r  

t o  t h e  case of s ta t ionary flow a t  high Reynolds numbers, in the  sense of 

FYandtl's boundary-layer theory. Emphasis w i l l  be on the  case of i dea l  gases, 

with the  usual value of unity given t o  the  Prandtl number (Pr = 1) , as in a l l  

o t h e r  theories.  I n  t h i s  case, t h e  equation of state f o r  i d e a l  gases 

I 

i 

= stat ic  pressure 
= gas collstant 

* '  . !  ' ) Q -  

$ 

- $s w e l l  as Sutherland's law f o r  t he  tempemture dependence of t h e  molecular 
> ,  



a t  C = 110.6 f o r  a i r  w i l l  be valid. The spec i f ic  heats c, and c, as w e l l  as 

t h e i r  r a t i o  n. = 

most important case of heat transfer by forced convection will be treated here, 

will be assumed as constant. Finally, only the pract ical ly  

in  which the buoyancy forces, due to density differences, can be neglected w i t h  

respect to ine r t i a ,  pressure, and viscosity forces. 

In  the  case of turbulent f l o w ,  o n l y  the  time-average values of the veloci- 

ties, pressures, temperatures, and physical constants are of interest f o r  our 

part icular  problem complex. The momentum and hea t  exchange, increased by the  

turbulent motion, is  taken in to  consideration by "effective" values f o r  the 

viscosi ty  and t h e  heat transfer coefficient c ~ e  and A,, as the sum of t h e  mlecu 

. -. - 
lar and "apparent" qmnt i t ies :  

- The apparent values FL, and A, are obtained f r o m  well-known empirical l a w s  [see, 

f o r  example, H-Schlichting (Bibl.9)]. 

The Prandtl number Pr, i n  t h e  case of a turbulent boundary layer, must be 

I 

I 

I 

formed with t h e  effect ive quantit ies FL. and A, : 
I 

p. Physical Principles 

Let us assume a two-dimensional flow along a fixed boundary. The x-axis 

of the  Cartesian coordinate system is  assumed to coincide with the (only s l i g  

ly curved) boundary. The m u n t  of h e a t  q(x) (energy per unit time and uni t  

area), transferred a t  a fixed p i n t  x i n  the  y-direction perpendicular t o  the  

, p a l l ,  will then, because of the viscosity condition of the  flow medium along 
I 
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t h e  boundary, be completely given by t h e  Fourier heat conduction fomula  

even in  the case of a turbulent boundary layer. 

! lar wheat transfer coefficientm I 

Equation ( 3 )  defines the  molecp- 
I 

i 
of the  flowing medium, as a known physical constant which depends only on the  

tempel-ature T. 

1 

1 

The problem of heat transfer between a s ta t ionary  wall and a flowing medium 

thus is solved f o r  laminar or turbulent boundary layers,  a t  the  general p r o b l e d  
I 
I atics and boundary conditions of Section 2, if the  temperature gradient 
~ 

( a T )  along the wall is known*. 
- 7 .  .aJr ,=o 

Thus, t h e  temperature field T(x,  y), i.e., under our assumption of high I 

Reynolds number, the  temperature boundary layer, must be determined i n  i t s  in- 1 

t e rac t ion  wi th  the  flow boundary layer. In addi t ion t o  the  influence of fo rced  

convection and heat conduction, the  temperature var ia t ions due t o  compression 

and f r i c t i o n  a t  be considered in full. 

; 

I I 

The l a w s  of conservation of mass and mmentum have the  usual form in our ' 

problem formulation. It only m u s t  be taken in to  consideration that t h e  physicat 

t ~ '  ,constants are variable. In formulating the  l a w  of conservation of energy, it 1 I - 8  
I 4  

4 ;is preferable t o  use as basis the  concept of total energy h, as the  sum of 

enthalpy and kinetic energy (all energies re fer r ing  t o  Unit mass): ~ 

i 
I 

- I V u (because of Q 1 in the 
&3 boundary layer)  

. 
- -  An addi t ional  heat transport  by radiat ion a t  high temperatures can be readi ly  i I 

icalculated i n  accordance with conventioqal laws [see, f o r  example cBib1.12]]. . 



I n  an i sen t ropic  f l o w ,  i.e., outside of the  flow and tempmture boundary layer, 

t h e  total energy h is known t o  be constant. Within t h e  boundary layer, t h i s  

total energy can be changed only by h e a t  supply or heat d i s s ip i t i on  due t o  heat 

conduction or by the  uork of shear stresses. 

work as w e l l  as compression or expansion work) does not exp l i c i t l y  en te r  t h i s  

energy balance since, on introduction of the  t o t a l  energy, t he  in te rac t ion  be- 

The work of pressures (technical 

> 

tween k ine t i c  energy and enthalpy is  implictly covered. 

4. System of Equations 

For t h e  assmed stat ionary two-dimensional boundary-layer f l o w  ( a t  large 

Reynolds number), the  laws of the  conservation of mass, momentum, and energy 

have t h e  following fom: 

I 
I 

Effective shear stress(8al 
i 
4 w i t h  t he  supplementary re la t ions  (1) - (4) f o r  p, we , and h, 

'unknowns u, v, h, 0, pe, and h e ,  a t o t a l  of six equations are thus available.  

For t h e  six 
I 

1 
I I .i . >  8 

On multiplying eq.(7) by t he  veloci ty  components u, an equation for t he  



mechanical energies is obtained: 

UL 

(91 

1 
i 

a,'E. - a l T M - $ j .  Q(Pu--- 2 E -u- Br, + 
I v I 

a *  AP 
Subtmct ing  eq,(9) from eq.(8) and taking eq.(5) i n t o  consideration will yield 

t h e  well-known equation f o r  t h e  enthalpy boundary layer 
1 

For the  case of i dea l  gases, w i t h  , 

eq.(lO) is t h e  equation f o r  t he  temperature f i e l d .  

The boundary conditions f o r  eqs.(6) - (10) are as follows: ! 

t 

A prescribable boundary condition (problem fornulation) is  t h e  pressure p(x) = 

= pa (x) impressed on the  boundary layer  and connected with the  veloci ty  u&(x) 

I along t h e  edge of t he  boundary layer  by the  Bernoulli equation 

, 

I 

CO 
:: 1 

, i 
The asymptotic t r ans i t i on  f r o m  u t o  u6 and f r o m  T t o  "6, a t  the  assumed 4 

I 
I . large Reynolds numbers, takes place prac t ica l ly  within a boundary-layer region j 
I 

whose approximate thickness i n  the  case of t h e  flow boundary layer  is denoted I - 

1 
I n  the  Case of 1 

l 
[ 

I 
.by 6, and i n  t h e  case of t he  temperature boundary layer  by 6 ,  

a laminar boundary layer,  according t o  Prandt l ts  approximtion ru l e  ( B i b l - l ) ,  
- i 

8 
1 



t h e  following applies i n  f i rs t  approximation: 

4 
. with ! 

I 

I 
I 

's (17) (17a) (17b) 
i ! t * P =  Jrw L 

! r  
I 

ri R =  t 

On t h e  basis of eqs.(15) and (16), this yields 

Thus, we have 6s = 6 ,  f o r  Pr = 1. The flow and temperature boundary layer$ 
1 

in t h i s  case which is appmldmately given f o r  gases ( for  example, a i r  a t  Pr = 

= 0.72)and for  a turbulent boundary layer, have pract ical ly  equal thickness. I 

For B > 1, Le., i n  the case of laminar flow of f l u i d s  (water: Pr = 7 a t  2d)C;; 

o i l :  Pr = 1600 a t  2Cf C) , t he  tempemture boundary layer  - according t o  eq. (18) L 

is  much thinner than t h e  flow boundaq layer.  

1 

i 
i 

. 

~ 

The thicknesses 6s and 6 ,  are  used only f o r  estimates. In  an exact s o h -  I 

t i o n  of t h e  s y s t e m  ( 6 ) ,  (7) , (8) , these quant i t ies  do not enter.  

The estimating formulas (15) and (16) f o r  6s and 67 w i l l  be used by us f o r  

Since the wall distances, within the  temperature; . simplifying eqs.(8) and (10). 

ibundary layer, are of t h e  order of magnitude of y -  6, - 
I 

1) f o r  the  order of magnitude of zem of the  h e a t  conduc-/ !is val id  (using - - 
I , the  followin4 I 
I 

X ' 

L 
t i o n  t e r n  in eqs.(8) and (10): 

I -  

/ '  , 
! 

, 

(19) I 

1 

I 
I 

ax I 
aT , increase up t o  an order of magnitude of If we le t  - and thus a l so  - dT" 

I ax 



t 

by a f a c t o r  of - 0 ,  - a dT a 
a x  aY L then  - (A %) w i l l  be smaller than - 

Thus, using t he  restriction of - dTw to dx 
LI 

(21 
dTw 27-4 T , - 4 d  
---.I--- 

& 
aU, a 

hr 
(A +)e ax X) aY 

aT inkeqs.(8) and (10) can be neglected for - a 
t h e  term - 
I n  each individual case, it must be checked whether t he  condition (21), which 

excludes extreme tempemture gradients - dT" , is sa t i s f i ed .  

' 

1 

dx 
With t h i s  simplification which, i n  an amlogous manner, can be used a l so  

i 

I 

f o r  t he  turbulent boundary layer, eqs.(8) and (10) can finally be written as 1 
follows [taking eqs.(5) and ( 6 )  i n t o  consideration]: 

For h. = 1, eq.(22) i s  fur ther  simplified t o  

, 

I 

10 



but remins valid fo r  a rb i t r a ry  compressible external flows (for arb i t ra ry  

pressure gradients T )  dP with o r  Without heat tramfer, possibly also f o r  turbud 

lent  boundary layers. 

50 &act Solutions f o r  t he  Temperature Boundary Layer 

5.1 Pr = 1, Heat-Insulated Wall, -$$- Arbitrary 

In t h i s  case, 

h = 

is a part icular  in tegra l  of t h e  equation (a), linear i n  h, so that the  t o t a l  

energy h is constant a l so  within the  boundary layer  despite the created heat o f ;  

f r i c t ion ,  a t  an a rb i t ra ry  pressure gradient -&. d 

F r o m  the  def in i t ion  equations ( 5 )  and (11) f o r  h and i, the  “temperature ; 

pmfi len  

i s  immediately obtained f o r  gases. If, using t h e  well-known gasdynamic re lat ion 

. t h e  local Mach number 

E 
U 

and - T 
T6 w I is introduced, the connectivity l a w  between - 

I 

i s  obtained f o r  eq.(26). Along the wall y = 0, u = 0, the “character is t ic  1 



temperature" T, prevails.  

a b a t i c  stagnation tempemture To 

I n  our case, t h i s  temperature is equal t o  the adi- 

1 

On t h e  basis of eq.(B),  the  flow boundary hyer  can be calculated acceding tor  

known methods [see for example (Bibl.9) p.3181. 

5.2 Pr A r b i t r a r y ,  dP = 0, - a i  - - cp ax aT = 0, (r dT" = 0, T, = const); ax 

H e a t  Transfer Arbitmry; aT Arbitrary 

According t o  L.Crocc0 (Bibl.4) and E.R.van 

x and y i n  eqs.(7) and (23) are replaced by t h e  

Using the  dimensionless shear stress 

and the  dimensionless enthalpy 

i* m 

, 

I 
I Driest (Bibl. 51 ,  the  quant i t ies  I I 

independent variables x and U. I 
I 

12 

(31) 

(323 

I 

(333 

I 

I 

(349 



U 
where t h e  prime indicates a different ia t ion t o  - . 
will then be 

The boundary conditions /12 us 

~- 
For a rb i t r a ry  but constant Prandtl numbers Pr and f o r  a shear stress distribu- 

t ion  K = 7 , assumed as known, eq.(34) which is l inear  i n  i can be inte- 

grated. The solution reads 

T* 7 

T W  

- 

(36 

> 

known shear stress dis t r ibut ion,  f o r  a rb i t ra ry  Prandtl numbers. 

The following is  valid: 

i , i 
I 
I 

= Reynolds analogy fac tor  (41) 
i 

= character is t ic  temperature (42) 
coefficient (recovery fac tor )  , 

I 

8 I 



7 
Since - is not known at first, the system (33) - (36) can be solved only /13 7, 

by i te ra t ion .  However, eq.(36) indicates t h a t  t h e  outer boundary y = 6 ,  (-& = 
T 

1 is located a t  a point  where fl and f 2  pract ical ly  reach a value of 1. 
7 

1 - - - =  
T6 

In  the  special  case of Pr = 1, t h e  d i f f icu l ty  due t o  the  unlcnown slope of 
' U  (%) is  eliminated since the exponent Pr - 1 = 0 i n  eqs. (39) and (40) &es ani 

integrat ion of eq.(34) independent of the  shear stress dis t r ibut ion.  For Pr = 1 1 

= 1, t h i s  w i l l  yield 
I 

(45) (46) 

wh l e  

. . 
(47) (48) 

I 
I 

Te aTei I 
c, =: L, 4 = r = 4  \ 

he solution (36), a t  i = C ~ T  has the  form I 

Consequently, t he  flow and temperature boundary layers are i n t i m t e l y  linked 

a l so  i n  t h i s  case. 

a l so  the  prameter  ( 
In t h i s  connectivity l a w ,  not only the  Mach number Mg but 

) plays an important role f o r  the heat transfer.  To - Tw 
T& 

According t o  eq.(5) and a t  P r  = 1, t h e  t o t a l  energy h w i l l  then read 
I 
i 
i 

(50) I 
I 
i 
[ 

U2 i n  h can be neglected f o r  I 1 

-. G T  is valid. Then, eq. (50) f o r  ?46 + 0, To -. I 
I 

$or an incompressible flow, the kinetic energy - 2 
t h e  enthalpy c,T so that h,, I 

i 
1 I +  Tb will  read as follows: 
i 



Consequently, t he  boundary layers of both temperature and flow a re  congruent 

i n  t h i s  case. 

1 

If the  dependence of the functions f l  and fi i n  eqs.(36) on the b a n d t l  
7 

number Pr, a t  given shear stress dis t r ibut ion - , i s  investigated, f o r  ex- 

ample, for t h e  shear s t r e s s  dis t r ibut ion of the laminar boundary layer over a 

plane plate  accoxding to H . B l a s i u s  (Biblolo)*, the  result plotted i n  Figs.1 

and 2 w i l l  be obtained: 

boundary value 1 a t  relat ively small distances f r o m  the  wall, which decrease 

fur ther  with increasing Prandtl number. 

7, 

Here, f l  and fa w i l l  "practically" reach t h e  asymptoti 

This corresponds to  t h e  estimate 

given i n  eq.(16), according to  which the thickness of the temperature boumkry 

layer decreases with increasing Prandtl number*. 

For the  case of turbulent boundary layers and assuming a linear slope of 

' see (Bibl.U+)], T C  the  shea r  stress with distance from the  wall, 

a result agreeing with Figs.1 and 2 is obtained. 

= 1 - 

* According to E.R. van Driest (Bibl.S), f o r  a laminar boundary layer,  t h e  
following expression i s  valid i n  satisfactory approxination within the  %ch 
number range of 0 c 5 < 4: 

* Since Prandtl numbers above 1 generally are i n  question f o r  l iquids,  i.e., uz o r  ~ - l  e f o r  gases f o r  incompressible media, the term with the f ac to r  - 

vanishes i n  eq.(36) a t  Pr > 1. 
simplified.  
media with Prandtl numbers much s m l l e r  than 1 (mercury wi th  Pr 
'20°C), corresponding simplifications of the theory are obtained. 

2 2 - 
In this m e r ,  t h e  theory f o r  Pr > 1 is  again 

For molten rcetals, as another example of pract ical ly  incompressibl 
0.023 a t  

4 

? 



5.3 Relations f o r  the  H e a t  Transfer i n  t h e  Special Exact 
Solution according t o  Crocco and van Driest  (Reynolds -lo& 

Using the  r e l a t ion  (36) ,  val id  f o r  a rb i t r a ry  Prandtl numbers, eq.(3) w i l l  

y ie ld  the  following r e l a t ion  f o r  t h e  h e a t  q,, transferred along the wall a t  i = ' 

or,  i n  dimensionless fom, at  

as local f r i c t i o n  coefficient 

Here, 

i s  a parameter for t he  heat transfer. 

w a l l ,  is obtained by integrat ion of ~ ( x )  in t h e  x-direction. 

The e n t i r e  heat, exchanged along the  I 

The symbol 

C 

S 
f = S T  (55) 

j 
5s known a l s o  as Stanton's number which (within the va l id i ty  range of the  theory 

described here, i.e., f o r  - dT" = 0 and 2 = 0) is connected with the  Nusselt ,  I 
dx dx 

I 

number Nu by t he  re la t ion  j 

j 

( 562 
.- - I 

The simple r e l a t ion  ( 5 3 )  f o r  the  heat transfer, known also as Reynolds 1 i 

- 
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~ 

analogy between f r i c t i o n  ( q )  and heat t ransfer  (q), is valid i n  t h e  same manner 

f o r  laminar and turbulent boundary layers. 
I 
I LE However, t h i s  re la t ion  becomes uncertain as soon as the assumptions 

- -  dTu - 0 and -& = 0 are not sat isf ied.  dx I 

N o  general exact solution of the system ( 6 ) ,  (7), (22), or (23) t h a t  would; 
I 

dT" bT cover the influence of - (by -) and %, is known. Below, we will de- 

r ive  an appmxhate  solution t h a t  makes use of physical and mthematical basic 
dx bx - 

principles,  which can be successfully applied t o  the approximate solution of 

the  problem of laminar and turbulent flow boundary layers. 

6 .  Basic Principle of an Approximate Solution of General Problematics 

In the  f i e l d  of laminar flow boundaries, basic properties of the solutions 

(of the  velocity prof i les)  had been determined in  special  cases by exact soh-  

t ions ,  such as "similar solutions" f o r  accelerated and decelerated flows of the  

type of us - x? a t  m = const, i n  accordance with D.R.Hartree (Bibl.13). These 

or ient ing solutions furnished impr tan t  criteria f o r  t h e  construction of s o h -  ' 

t i o n  arguments f o r  velocity profiles,  expected i n  the general problematics [a t  

a r b i t r a r y  slope of q,(x)]. 

In these cases, arguments f o r  the velocity profile,  of the following form 

w e r e  obtained: , 

fac  o I 
where 6, (x) denotes the boundary layer thickness and H(x) is a fom,o$ The t m >  ' 1 

I 
unknowns of the solution argument. For determining these unknowns, the  integral 

'conditions f o r  momentum and energy, derived f r o m  eqs.(7) and ( 9 )  by partial in-: 
I 
I 

i tegzation t o  9,  can be used; This approximate solution is then necessarily 



i den t i ca l  w i t h  the  exact solution, for  flows of the type u5 - 2. 
In a similar manner, we will use the exact solutions t reated i n  Section 5 

f o r  constructing a solution argument which contains these exact solutions as 

spec ia l  cases, but provides one more - or,  if necessary, several  more - f r e e  

parameters that permit an adaptation t o  more general problem formulations. 

Known solut ion arguments f o r  the temperature p ro f i l e  7 T use an  expansion 
'6 

with coefficient functions of the  distance X i n  powers of  t h e  running length 

from the  wall y [H.Schlichting (Bibl.S)] or in powers of the  w a l l  distance y w i  ;h 

coefficients depending on x [D.N.Morris, J.W.Smith (Bibl.ll)]. In  view of the  

character of t h e  exact solutions discussed in Section 5, it seems advisable t o  

construct the  solut ion argument f o r  - with the functions f l  and f i  of the 
T6 

exact solut ion ( 3 6 )  derived by van Driest (Bibl.5) o r  e l se ,  a t  Pr = 1, t o  use a~$ 

expansion in powers of the veloci ty  - in which case, f o r  physical reasons ' 
us 

[because of eq.(49)], the  terms with - and (e) might be suff ic ient .  

, 

2 

u6 
The special  solution ( 3 6 ) ,  exactly val id  f o r  .F dTw - - 0, dP = 0, w i l l  be 

w i t h  

We modify t h i s  solut ion by introducing a form parameter K(x) independent 
' 

T 
D f  x, such that, f o r  fl = fa = 1 ( w i t h  a + b + c = l), we have = 1 

! 

with a, b, c according t o  eqs.(5S;) - (61). For Pr = 1, eq.(62) is  transformed 

1------ --- i n t o  
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The modified arguments (62) and (63) spec i f ica l ly  have the  property, required /ts 
by Schlichting (Bibl.7), t h a t  a hea t  transfer - aT # 01 is  s t i l l  possible 

a t  a temperature gradient i n  the  direct ion of flow, despi te  b = 0, i.e., despi te  

Tw = T, or, i n  t he  case of an incompressible flow, despi te  Tu = Tg. Beyond 

1 t h i s ,  t he  s o % w ? $ o r  L, compared t o  the  conventional arguments wi th  expan-' 
T6 

sions in series to xI has t he  advantage that Tu (x) and U ~ ( X )  can be a rb i t r a ry  
! 

functions of x and t h a t  t h i s  argument is  d i r ec t ly  val id  f o r  Laminar and turbu- 1 

l e n t  boundary layers  . 
The r e l a t ion  (53) generalized on t h e  basis of t h e  argument (62), f o r  the 

heat t r ans fe r  then reads 

The proportionali ty between f r i c t i o n  (e resp. ST) and heat flux (q) t h u s  is 

retained in t h i s  generalized theory despite the  f a c t  t h a t ,  s t r i c t l y ,  it can no 

longer be valid. 

The unknown K(x) of t h e  approximation theory ,  added t o  the  ex is t ing  6 ,  (x) 

Especially su i tab le  i s  an integral 

T h i s  mndit ion 

and H(x), requires an addi t ional  equation. 

condition obtained by a p a r t i a l  integmtion of eq.(22) over y. 

reads 
I 

j 

, (653 

I 

I 
I 

1 

The above equation is  val id  f o r  arbitrary pressure and temperature gradients in' 

. the d i rec t ion  of flow [taking eq.(20) i n t o  consideration] as w e l l  as f o r  arbi- 

trary Prandtl numbers, i n  both laminar and turbulent boundary layers  with 

19 



var iab le  physical constants. 

heat of f r i c t i o n  (dissipation) which is considerable i n  a compressible flow. 

The equation a l so  covers the influence of the  

For greater c l a r i t y  of the  solution method, we w i l l  r e s t r i c t  the calcula- 

t i o n  t o  the  case of Pr = 1. 

boundary layer, i n  f i r s t  a p p r o h t i o n ,  are assumed as known f r o m  calculating, 

If the  character is t ic  quant i t ies  of t he  flow 

, 

in t h e  conventional manner, with K!’) = 0 (i.e., with the  c l a s s i ca l  Reynolds , 1 
analogy), t he  following d i f f e r e n t i a l  equation of the  f i rs t  order  (using a prime I 

f o r  t h e  derivative t o  x) is obtained for K(’) : 

Here, 

with 

20 



dTlf . dx dx - dp is expressed i n  'p1 and (p2 by b' [see The influence of - 
% 

eq.(bo)] and by - [see eq.(U+)]. us 
layer quantities can be i t e r a t ive ly  improved and thus w i l l  converge rapidly, 

according t o  available data. 

t ion  theory, Tw(x)  can be prescribed i n  any form, so that - f o r  example - no 

The solution f o r  K(x) and f o r  the boundary; 

It should be mentioned t h a t ,  i n  t h i s  approxima- 

> 

expansion i n  powers of x is necessary. 1 

For completeness, we are giving here the  in tegra l  conditions f o r  momentum 
I 

1 
and energy i n  a f o m  found useful fo r  pract ical  calculations of incompressible 1 

1 
laminar and turbulent boundary layem. 

I 

Instead of the  boundary layer  thickness 6, (x), t he  following quantity i s  1 

introduced as parameter for the thickness of the  flow boundarg layer: 

n = 1. f o r  laminar boundary layer  
n = 0.268 f o r  turbulent boundary layer  

with 

* I  
bhen, the " l aw of the  consemmt 

The law of conservation of energy is written in the  form of 

I 

- 21 ~ - - 
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Here, Fl t o  F4 are universal functions t h a t  are f ixed by eqs . (68)  - (73) with 

eqs.(57), (S ) ,  o r  (62) t h a t  contain the parameters H,  %, b (or e), and K. 

these, $(x) and b(x) are known f r o m  the pmblem formulation. 

Of 

i 
Details on t h i s  

calculus, with more accurate data  on the solution arguments for laminar and 

turbulent boundary layers,  as well as the  empirical laws f o r  wall shear stress 

and d iss ipa t ion  a t  turbulent boundary layer  are given by M.Mayer (Bibl.12). 

7. Rotation-Symmetrical Boundary Layer 

Frequently, heat exchangers are b u i l t  up of pipe systems with longitudinal,  
1 

! 
- 

f l o w ,  on whose inner  o r  ou ter  boundary the  rotation-symmetric "start-up" 

boundary layer reaches a thickness a f t e r  a cer ta in  running length, which is 

comprable t o  t h e  pipe radius. 

8 

I n  the elctrusion of thermoplastic materials in 

jet nozzles, the  threads are exposed as t h i n  cylinders t o  a longitudinal flow, 

which s t re tches  and cools them. 

a multiple of the  thread radius r,. 

The boundary layer  thickness may here  reach 

dT" Simultaneously, t h e  gradients 'ax- and 

- dp m y  be high. 
dx 

Here, technical ly  important cases of mtation-symmetrical boundary layers 

are involved, t o  which the  above equation system f o r  t he  flow and temperature 

boundary layers  cannot be d i r e c t l y  applied. 

Under the  assumption that t h e  boundary layer  thickness 6s rernains small 
6s with respect t o  the  running length x (7 < l), t he  complication r e l a t ive  t o  

the standard theory i s  r e l a t ive ly  minor. 

occurs i n  t h e  equations. 

6, However, still another parameter - 
rb 

6s A t  - -. 0, the equations (as is necessary) are 
r0 

~- 
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transformed into t he  form f o r  normal rotation-symmetrical boundary layers  which 

can be transformed to t he  two-dimensional case by using the  bngler t ransforma-  

t i o n  (Bibl.11) . 
i In h i s  thes i s ,  M.&yer (Bibl.12) developed in t eg ra l  conditions f o r  m- /22 

, mentum and energy f r o m  the partial d i f f e ren t i a l  equations valid f o r  our case 
I 

and then worked up a l l  universal functions i n  these equations f o r  compressible 

laminar and turbulent boundary layers,  based on the  improved argument (63) f o r  

t h e  t e m p e r a t u r e  boundary layer  with t h e  auxiliary unknowns K(x). 

of a laminar boundary layer,  the  velocity prof i les  of Hartree (Bibl.13) were 

assumed, while "power profiles" were used i n  turbulent boundary layers. 

In t h e  case 

I 

8. Examples 

8.1 Two-Dimensional Flow 

8.U. Flow along a Plane Plate  (& = 0) with T e m p e r a t u r e  G r a d i e n t  

8.111 Laminar Boundary Layer with Constant Physical Constants P r  = 1 

This example had been t reated by H.Schlichting (Bibl.9). The temperature 

differences Tw - T6 o r  - using the relat ions of our appro-tion theory - the  , 

values b of eq.(60) are assumed as being so small that t h e  physical constants 

. .. 
can be assumed as - = 1. 

the  plane plate,  with B l a s i u s f  solution (Bibl.10) f o r  t h e  veloci ty  prof i le ,  can' 

be considered as known. I 
according t o  powers of t he  running length - with coeff ic ients  t h a t  are func- 1 

t i ons  of the  wall distance y, which has been made dimensionless. For each co- 1 
e f f i c i e n t ,  t h i s  will yield a l i nea r  ordinary d i f f e r e n t i a l  equation of t he  

second order which, as a rule, can be solved by numerical integration. 

tseries was terminated a t  the  term quadratic i n  -. 

In  t h a t  case, the  normal flow boundary layer of 
P6 

1 1 

X I 
Schlichting selected a solut ion argument f o r  T(x, y) 

I 

L 
1 

42 
The 

, 
1 

I X However, t h i s  does not in-j L - 1  
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t e r f e r e  wi th  t h e  accuracy of the theory and m r e l y  r e s t r i c t s  t h e  appl icabi l i ty  

range t o  temperature dis t r ibut ions T,(x)  up t o  a t  mst a parabolic character. 

I n  t h e  case of a l i n e a r  d i s t r ibu t ion  of t he  wall temperature in accordance with 

t h e  r e l a t ion  

- .  

and a Prandtl number of Pr = 1, Schlichting obtained t h e  following expression 1 
f o r  the local h e a t  flux: 

Solution of the  same problem under the same assumptions and using the  above- , 

developed a p p m d t i o n  theory, w i l l .  furnish the  following r e s u l t  after a close$ 

integmtion of eq,(66) with H = 1.572 = const, according t;o M m e r  (Bibl.12): 

Both solut ions a r e  plotted i n  Fig.3 against the  running length x. 
t i o n  of the  a p p r o h t i o n  solution from Schlichting's solution is  minimal. 

in te res t ing  point i n  t h i s  result is - as already mentioned by Schlichting 

(Bibl.9) - t h a t  the  hea t  flux q(x) i s  not zero a t  the  point a t  which the  tem- 

jperature Tw - Tg vanishes, namely, at 

,= 0.288 (0.313 according t o  Schlichting). 

f i les,  calculated f r o m  eq.(63), a t  the points 

. t r a t e  t h i s  statement . 

The devia- L 
An 

~ 

x -  = 0.5, but f a r the r  upstream a t  - - I L 
Figure 4 shows the  temperature pro- 

I 

1 
= 0.288 and 0.5, which i l l u s - '  

I 
I 

In  the  case of a parabolic d i s t r ibu t ion  (increase) of t h e  wall t e m p e r a t u r e b  
I 
I 

I 

1 1 

in accordance with the  l a w  



t h e  results according t o  Schlichting (Bibl.9) w i l l  read 

while, according t o  t h e  new approximation theory [with a closed integrat ion of 

eq. (66) 3 ,  they will read 

Figure 5 shows that the result of these tm calculations d i f f e r s  very s l igh t ly  

but t h a t  t he  error with respect t o  t h e  calculation at constant wall temperature; 

is considerable. For a mre de ta i led  discussion of t he  results, Schl icht ingfs  1 

report should be consulted (Bibl.9). 

8.112 Laminar Boundary Layer wi th  Variable Physical Constants, 1 

Incompressible Flow, Pr = 1, CL - p, w = 0.7 

The results f o r  t h e  cases mentioned in Section 8.111 are applicable here 

(as mentioned before) only f o r  such small temperature differences T, - Tg o r  f o r  

values b d i f f e r ing  so l i t t l e  f r o m  zem that the  physical constants can be as- 

~sumed as being invariant. 

with such large values of the  parameter b o r  of t h e  m t i o  

t i o n  of t he  temperature boundary layer on the  flow boundary layer  takes place 

I 
I 

However, our theorg permits a treatment of cases 
I 

Tw(0) t h a t  a reac- 
T6 I 

a l so  i n  the  case of an incompressible flow. However, i n  t h i s  case, t h e  solutio# i 
1 

is  possible only by a numerical integration of the  simultaneous system of equa-1 1 

t i o m  (661, (771, (78). Figure 6 ,  f o r  t he  example of eq.(79), shows the influ-! 



ence of Tw(o) on q(x). 

gated range of values 1 < 

0.288. 

T6 

Accordingly, t h e  point (5 

< 1.5, renrains practically unchanged a t  about 

, within the investi- ' L Lo 
Tw 
T6 

The local  h e a t  flux q(x) does not decrease with increasing value of 

Tw(0) < 1.1, the influence of the variable physical constants /25 . For 
T6 

Tw (0) 

is thus negligible. 

8.ll3 Laminar Boundary Layer w i t h  Variable Physical Constants, 
Compressible Flow, M = 3.0, Pr = 0.72, P - T (m = 1) 
LChapmn-Rubesin Example (Bibl.6)l 

I n  t h i s  c lass ical  t es t  example, t h e  system of equations (66) - (78) m u s t  

be used as basis, without the terms containing the fac tor  db (because of db = 

= 0) but under consideration of the compressibility terms (Mach-number terms). 
/ 

Figure 7 gives t h e  calculation result in comparison with the  e x a d  solu- 
, 
I 

t ion.  The agreement is satisfactory.  In addition, we plotted t h e  c o m p u t a -  1 

t i ona l  data obtained according t o  the approximation theory of Morris-Smith 

(B ib lo l l ) ,  which deviates considerably from the  exact solution. 

the h e a t  flux a t  constant wall temperature T,, plotted i n  Fig.7, indicates t h e  

The curve of 

dTw excessive error t h a t  might appear when the  temperature gradient is ne- 

glected. 

8 .ll4 Turbulent Boundary Iayer, Invariant Physical Constants, 
Incompressible Flow, Pr = 1 

, 
In t h i s  example, a closed integration of eq.(66) f o r  K(x) is  also possible; 

Well-known empirical laws apply here t o  the  velocity prof i le  and t o  the f r i c t i o n  

coefficient cf [see, f o r  example, J.Rotta and H.Fernholz (Bibl.16, 17)]. I n  ! 

I 

! 

! 

I 

I Ithe case of a l inear ly  varying wall temperature in accordance with eq.(79), i 

which w i l l  be the case discussed here, we have 
\ >  



L 1 (see Fig.8) . A vanishing heat flux is obtained here at about -f- = T ,  
i.e., approximately a t  the  same pint as i n  the  laminar boundary layer  (see 

f x  
Merely the  d i s t r ibu t ion  l a w  f o r  Q 7) is  d i f fe ren t  (d i f fe ren t  powers Fig.3) . 

\ L /  
X of - and of RL) .  

on t h e  form fac to r  H [eq.(74)] of t he  veloci ty  profile.  

In addition, there e ~ s t s  a minor dependence of the result L 
For lo" < RL C lo', 

the  value of H is  located approximately within the  range of 1.70 < H < 1.85. 

The absolute values of q, in the  case of a turbulent boundary layer, may 

be severa l  orders of magnitude higher i n  t h e  mentioned RL region (because of t h  

higher values cf) than i n  t h e  case of a laminar boundary layer ,  as clear ly  ind i  

cated by a comparison of eq.(85) wi th  eqs.(80) o r  (81). -. 

The author never has encountered comparative tests f o r  checking these 

computational data. 

8.12 Flows with Pressure Gradient (I& f 0) but with Constant Wall 
Temperature Tu = const, Invariant Physical Constants, 
Pr  = 1, Laminar Boundary layer 

In t h e  examples discussed i n  Section 8.11, t h e  influence of a wall tern- 
. ,  

perature  Tu (x), varying i n  the  direction of flow, on the  heat t m n s f e r  was in- 
) \  ; 

5est igated.  

'exact solut ion of Crocco - van Driest (Bibl.4, 5), may be considerable. 

It was found t h a t  t h i s  e f fec t ,  which had been neglected i n  the  
# 

Ye w i l l  next have t o  demonstrate t h e  influence of a pressure gradient i n  

the  d i rec t ion  of flow, a p i n t  tha t  had a lso  been neglected in the  above exact 
! 

- !  'theory. In t h i s  case, t h e  wall temperature T,, is kept constant ( fo r  separating 

dTu and -). dP The temperature differences Tu - Tb, dx khe influence f ac to r s  
' ,  
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occurring during the  heat t ransfer ,  are assumed so smll (as i n  the  case of t he  

plane plate  i n  Section 8.111) that the physical constants can be considered in- 

variant and the flow boundary layer  as independent of t h e  temperature boundary 

layer  . 
For t h i s  investigation, the  "similar solutions" of t he  incompressible & 

I 

laminar boundary layer, a t  potential  flows of the type u - x" are especial& i 

su i tab le  . 
According to the exact solution by D . R . H a r t r e e  (Bibl.l3), the  form fac tor  

H = H(m) of t h e  velocity prof i le  is constant f o r  each value of t h e  exponent m, 

i.e., H' = 0. 

boundary layer),  eq. (77) w i l l  then yield, because of H = const and T: = 0 

For the  pameter Z(x) of eq.(75) (for the  thickness of the  

~ (P; = o), 
I 

The thickness of the momentum loss w i l l  thus become 

. -  

' I  

i 

, '  

With these  results, a closed solution of eq.(66) f o r  K(x) becomes possible. 

According t o  an elementary c a l c u l a t i o n ,  we obtain 

I n  Fig.9, is plotted against  H(m). 

For the case of a plane plate with m = 0, we obtain K = 0, as required. 

In t h e  case of an accelerated flow at  m > 0, the quantity - K is  negative so 

$hat the heat f lux,  according to eq. (64) , will be smaller than i n  a flow with- 
b 
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out pressure gradient (m = 0). 

r i s e ) ,  at m < 0, the heat t ransfer  i s  improved over the case of m = 0. 

In t h e  case of a decelerated flow (pressure 

In t h e  case of a considexable pressure rise, the variation i n  h e a t  transfer 

is considerable. W e  have scheduled to make a check on t h i s  ra ther  surprising 

and pract ical ly  significant result, using a difference method and actual  meas- 

urements . ! 

8.2 Rotation-Symmetrical Flow /28 

For checking the above theory,  t e s t s  on the  temperature boundary layer  by 

E.R.G.Eckert, R.Eichhorn, Th.L.Eddy (Bibl.18) are available, who m d e  studies 

on a cylinder i n  longitudinal flow db = 0 (g = Ol, with a temperature gradi- 

ent  i n  t h e  direct ion of flow. Cases with  both laminar and Kith turbulent flow 

boundary were investigated. 

tained by sui table  e l e c t r i c  heating. 

The variation in w a l l  temperature T, (x) was ob- 

Figures 10 and U. show two distributions of the parameter b(x) = 1 - 
- Tw 

dis t r ibu t ions  b(x) + K(x) calculated on the basis of the theory by M.kyer 

(gib1.12). 

boundary layer  and of the  boundaqy layer T(y) - Tb calculated from eq. ( 6 3 ) ,  for 

t w o  points x of the cylinder surface. 

-by intmduction of the  new parameter K(x), was considerable. 

, adjusted t o  (measured) a laminar boundary layer, together wi th  t h e  
T6 

Figures 12 and 13 give a cornprison of the measured t e m p e r a t u r e  

The improvement of t he  theory, obtained 
i 

A corresponding comparison f o r  turbulent boundal-g Layers has been made i n  

iFigs.& - 17. 
test data, specifically i n  t h e  vicini ty  of the wall (which is decisive f o r  a 

correct reproduction of t h e  h e a t  transfer). 

Obviously, the new theory results i n  a better agreement with the  

Finally, Fig.18 shows t h e  resu l t  of applying the boundary layer theory t o  

29 
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an example with dation-symmetric flow and considerable variations in t h e  

physical constants, i n  which t h e  boundary layer thickness 6,  is  large compared 

with the  cross-sectional radius ro of the body i n  longitudinal flow (see 

Sect.7). 

exposed to longitudinal flow, having a mean tempemture of about WC,  was 

involved, 

Here, a smelting jet  (scoria), ejected f r o m  a platinum nozzle and 

: 
l 
I 

The shear forces of a b las t  jet, flowing a t  a velocity of about 

200 m/sec, attack the surface of t h i s  smelting jet and cause i t s  dis tor t ion.  

A combination of these shea r  s t resses  with t h e  internal s t r a ins  of the viscous 

smelting je t  determine t h e  course of t h e  cross-sectional radius r,(x) in the 
, 

direct ion of flow. 

function of the running length x, performed by M.kyer (Bibl.l2), is  in satis- , 
factory agreement with t h e  experimental result (acceding t o  Fig.18) and thus ' 

The calculation of the cross-sectional radius ro as a &!(J 

represents an indirect  proof f o r  the usefulness of the above-developed approxi-; I 

nation theory. 

9. 

For solving the  problems of heat transfer, as posed by the  high-velocity 

aerodynamics of aeronautics and cosmnautics as well as by mdern heat-exchanget. 

and nanufacturing technology, the classical theories  and computation methods 

:based primarily on NusseltTs work are  generally no longer suff ic ient ,  
I 
'feet of temperature gradients i n  the  direction of flow, which was neglected in ' 

, 

The ef- 
> 

I 

I 
I I 

I 

these theories,  has been proved as appreciable i n  basic investigations by 
1 
i 

Chapnan-Rubesin (~ ib1 .6 )  and Schlichting (Bibl.9) f o r  the  case of laminar 

boundary layers. i 
r 

An appro-tion theory is developed f o r  covering the e f fec t  of such t e m -  , 

perature gradients a t  a rb i t r a ry  slope of the wall temperature Tw (x), which is 

__. 
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simultaneously applicable t o  both incompressible and compressible turbulent 

boundary layers.  

The theory a l so  demnstrates  (for similar solutions of laminar boundary 

layers), in an analytically definable form, that t h e  influence of a pressure 

gradient - dp i n  the  direct ion of flow on the  heat transfer, which also had beep 
i 

neglected in the  c lass ica l  theory of hea t  t ransfer ,  might be appreciable. 
dX 

It is charac te r i s t ic  f o r  t h i s  theory t h a t  no expns ions  i n  series are re- 

@red f o r  the  temperature prof i le  and f o r  the veloci ty  prof i le  of t he  boundary 

layer,  which would have t o  be adapted t o  each example. 

f o r  the temperature and veloci ty  pmf i l e ,  the bas ic  s t ruc ture  of conventional 

e w c t  solutions is  retained and one f r ee  prameter  each, f o r  adaptation t o  

general problemtics  and boundary conditions, is introduced. Thus, t h e  approxi; 
I 

mition theory, i n  addition t o  t h e  boundary layer thickness (momentum loss thick& 

ness),  contains only a form f a c t o r  H(x) as the unknown f o r  the  veloci ty  prof i le :  

and a "modification p a m e t e r n  K(x) as t h e  unknown f o r  the temperature profile.  

For determining these three  unknowns, a simultaneous system of three  ordi- 

nary d i f f e r e n t i a l  equations of t h e  first order is  used ( in tegra l  conditions f o r  

mmentum, mechanical energies, and t o t a l  energy). I n  t he  tw energy equations, 

In the  solut ion argument 

! 

/80 
I 

l 

the  work done by the  shear stresses (dissipation) i s  ful ly  considered. 

portant special cases, closed solutions of t h i s  system are possible (see 

Sect.8.1). 

conventional procedures . 

I n  im- 

I n  general, a numerical solution m u s t  be performed according t o  

Typical calculation examples a re  given f o r  demnst ra t ing  the  general appli  

a b i l i t y  and usefulness of the  approximation theory. 

For perfoming and checking the  calculation samples, the author wishes t o  

__ 
!express h i s  thanks t o  D r .  M.Ebyer, Dr. D.Geropp, and M.S.B.Schulz-Jander. 
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FIGURE TITIES L22 

Figs.1 a d  2 hznctioaw fl a36 fi accoxiing t o  Eqs.(37) - (40) Plotted agaiist 
t h e  Dimensionless 

,,Wall Distance B of t h e  B l a s i u s  Solution, f o r  t h e  Flow along a 

Plane P l a t e ,  with t h e  Prandtl Number Pr  as Parameter. 

Plane P la te  in Longitudinal Flow, with Linearly Varying Wall Temperature 
m 
2!L acconling t o  Eq.(79). Assumptions: Laminar Boundary Iayer, 

T6 
Invariant Physical Constants p, CL, h ,  and P r  = 1. Slope of t h e  Local 

H e a t  Flux q(x) Plotted against  t h e  Running Length f-. 
JKL(TW(0) - Tg)/L 

Comparison with Schl icht ingfs  Result (Bibl.9) Given by Broken Line, 

Temperature  Prof i les  rpr - 1 of the  Example i n  Fig.3, a t  t h e  Points 

- 1.1. 
X Twf4) - = 0.288 and 0.50 f o r  - - 
L T6 

Plane Plate  i n  Longitudinal Flow, with Parabolic Distribution of the  

Wall T e m p e r a t u r e  - according t o  Fq, (81) . Assumptions: Laminar 

Boundary Layer, Invariant Physical Constants p,  p,  A, and Pr = 1. 

of the  Local H e a t  Flux 

Slope 

P l o t t e d  against  t h e  Running q(xfi1 
T%) - T6 

J K L  L hw 

Length. Comparison with Schlichtingts Result (Bibl.9) Given by Broken 

Line. Calculation Result f o r  Tw = const, Dot-Dash Line. 

Generalization of t h e  Example in Fig.3: Influence of the Parameter 
Tw of Eq.(79) on t h e  Local H e a t  Flux q(x). 

T& 
Plane Plate  in Longitudinal Flow, with Temperature Gradient in the  

Direction of Flow. Assumptions: Laminar Boundary Layer, Compressible 

Flow, Mach Number & = Ms = 3.0, Pr = 1, CL - T, Comprison with Chapmar 

Rubesinfs Exact Solution (Bibl.6) and with Norr isSmithfs  Approximation 

Solution (Bibl.ll) . 



Fig.8 Plane Plate i n  Longitudinal Flow wi th  Linearly Varying Wall Tempera- & 
ture, according t o  Eq. (79) . Assumptions : Turbulent Boundary Layer of 

- =  X 0 up t o  1. Pr = 1. 
L 

Fig.9 Influence of a Pressure Gradient on the  H e a t  Transfer at  Constant Wall 

Temperature ,  Tu = const. Assumptions: T r  Boundary Layer, Similar j 
j 

Solutions f o r  u,(x) - 2 , Invariant Physical Constants, Fr = 1. 
Tu (4 Figs.10 and 11 Examples of a Wall Temperature Distribution b(x) = 1 - 

T R  v 

on a Cylinder i n  Longitudinal Flow, according t o  Eckert (Bibl.l8), and 

Calculated Distribution of t h e  Function b + K in the Case of a Laminar 

Boundary h y e r .  

Figs.12 and 13 Comparison of the Temperature Profiles T(y) - T6, Calculated 
2 

I 
f o r  the Temperature  Distributions b(x) of Figs.10 and 11, wi th  Eckert*s/ 

I 
I Experiments (Bibl . 18) . 

Figs.% and 15  Examples of a W a l l  Tempera ture  Distribution b(x) = 1 - Tu (x t  T6 
on a Cylinder in Longitudinal Flow, according to  Eckert (Bibl.l8), and 

Calculated Distribution of the Function b + K i n  the Case of Turbulent 

Boundary Layer. 

Figs.16 and 17 Comparison of the Temperature Profiles T(y) - T6, Calculated 

f o r  the Tempemture Distributions b(x) of Figs.& and 15, with  Eckertts ,  

Experiments (Bibl . 18) . 
Boundary layer Theoretical Calculation of t h e  Distortion of a Smelting 

Jet i n  a Blast Je t ,  according t o  M.Mayer (Bibl.12). 
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0.288 and 0.50 f o r  the  Points - = 
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Fig.6 Plane Plate ,  Laminar, Incompressible Flow, Linear Variation 
i n  Wall Temperature. 
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Variable Physical Constants, Influence 

of . Calculation wi th  Modified Tempera tu re  

" 
41 
I 



e- 

t 

r -  

, 

Q - X  

1.2 
, f Lo 

Q.8 

Fig.7 
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Plane P l a t e ,  Laminar, Compressible Flow M, = 3.0, Fr = 
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, . Comparison with t h e  Exact Solution X - 0.83 XL + 0.33 (- L )  

by Chapan-Rubesin (~ib1.6) and with t h e  Approximation 
Solution by Morris-Smith (Bibl.11) 
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Fig.12 Temperature Profile T(y) - Thy Calculated f o r  
Fig.10, a t  Laminar Boundary Layer. omprison wi th  

Eckert f s  Experiment (Bibl. 18) 
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Fig.13 Temperature Profile T(y) - Tg, Calculated f o r  
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Fig.1'7 Temperature  Profile T(y) - To, Calculated f o r  Fig-15, at Turbulent 
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Boundary Layer. Comparison mth Eckert s Experiment (Bibl. 18) . ,  
_ _  

. ~ _ _  52 



NASA TT F-9768 

L 

Fig.18 Boundary Layer Theoretical Calculation of t h e  Distortion of 
a Smelting Jet i n  a Blast Flux, according t o  M.Wyer (Bibl.12) 
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